

School Bus Restraint Study National Highway Traffic Safety Administration

Linda McCray - OVSR/NHTSA Lisa Sullivan - VRTC/NHTSA Jeff Elias - TRC Inc.

BACKGROUND

- > 440,000 Public School Buses
- >4.3 Billion Miles
- > 23.5 Million Children to and from School

BACKGROUND

- ➤ Last FMVSS 222 Rulemaking Efforts Occurred in 70's
 - Passive Protection Compartmentalization
- ➤ 1998 A Congressional Mandate to Evaluate Next Generation School Bus Safety Restraints

➤ For School Buses Greater than 10,000 pounds GVWR

Passenger Occupant Protection

(compartmentalization) - Requires that the interior of large school buses provide occupant protection so that children are protected without the need to buckle-up

CURRENT FMVSS 222 School Bus Seating and Crash Protection

School Buses Equal to or Less Than 10,000 Pounds GVWR

Passenger Occupant Protection

Requires that lap belts are installed at every seating position

COMPARTMENTALIZATION

Buses Differ From Passenger Vehicles

- 1. Larger High Ground Clearance
- Heavier Lesser Crash Forces (Vehicle to Vehicle)
- 3. Structure Different Crash Force Distribution

COMPARTMENTALIZATION PASSIVE PROTECTION

- Energy Absorbing Seat Back Structures
- > Padded Seat Backs
- Strong, Closely Spaced Seats

OBJECTIVES

- Determine Effectiveness of Current Federal Requirements
- > Identify Restraint Alternatives
- **► Identify Fatal Bus Crash Conditions**

OBJECTIVES - Continued

- Develop a Sled Test Pulse (Crash Testing)
- Evaluate Performance of Restraint Alternatives (Sled Testing)

OBJECTIVES - Continued

- Estimate Overall Safety Performance of Restraint Alternatives
- Make Recommendations Based on Findings

PLANNED RESEARCH

- > PHASE I Problem Definition
 - Scope
 - Fatal Crash Environment
- PHASE II Sled Test Pulse Development
- PHASE III Sled Testing and Validation

PROBLEM DEFINITION

- Literature Survey
- Data Base Analysis
 - Sources:
 - FARS
 - GES
 - NASS
 - NTSB/SCI
- Notice Issued Requesting Public Input
- > State and Local Crash Information

SCHOOL BUS INJURIES (GES)

Estimated 8,500 Injuries Per Year

. 7,285 (86 %) Minor

. 885 (10 %) Moderate

• 350 (4 %) Serious to Critical

SCHOOL BUS FATALITIES

> Since 1988 There Have Been:

• 416,000 Fatal Traffic Crashes in the U.S.

. 1,265 (0.3 %) Were School Bus Related

In Which 1,409 People Have Died

SCHOOL BUS FATALITIES

➤ Of The 1,409 School Bus Related Fatalities:

• 64 % Were Occupants of Other Vehicles

• 27 % Were Non-occupants (Pedestrians, Bicyclists, etc.)

10% Were School Bus Occupants (2 % Driver - 8% Passenger)

> From 1988 to 1997

115 Passenger Fatalities in Large School Bus Crashes

Fatalities by Most Harmful Event

115 Total Fatalities

Fatalities In 2-Vehicle Crashes by Posted Speed Limit

Fatalities In 2-Vehicle Crashes

Heavy Truck Impact Direction

PHASE I - SUMMARY

- **► Low Probability of Fatal Injury**
 - 115 Fatalities (1988-1997)
- Significant Factors, Fatal 2-Vehicle Crashes
 - Posted Speed Limit 55-60 mph
 - Heavy Truck
 - Frontal Impact (83%)
 - Side Impact (15%)

PLANNED RESEARCH

- > PHASE I Problem Definition
 - Scope
 - Fatal Crash Environment
- ➤ PHASE II Sled Test Pulse Development
- PHASE III Sled Testing and Validation

- > Based on Phase I Results
- Representative of Real World Crash Environment
- > Two Crash Tests Were Conducted

LABORATORY CRASH TESTS

➤ Frontal Rigid Barrier, 0 °, 30 mph

➤ Side Impact by Heavy Truck, 90°, 45 mph

FRONTAL SEATING

FRONTAL RIGID BARRIER

FRONTAL CRASH TEST RESULTS

<u>DUMMY</u>	<u>Nij</u>	<u>HIC</u>	CHEST G
1 (50th)	0.91	244	26.0
2 (6 Y/O)	1.57	93	30.8
3 (6 Y/O)	1.06	251	30.9
4 (5th FEM)	1.15	105	No Data
5 (5th FEM)	1.38	330	22.6
6 (50th)	0.84	150	22.3

FRONTAL CRASH TEST

- > 30 mph Rigid Barrier Crash Test
- ➤ Type C Full Sized Conventional School Bus

STATIC CRUSH DATA

- Maximum Static Frame Crush 8.1 inches
- Average Static Frame Crush 4.5 inches
- Significant Body Crush But Little Frame Crush

FRONTAL CRASH TEST

Motion of Body Relative to Frame

FRONTAL CRASH TEST DECELERATION PULSE

ACCELERATION (9)-(100 Hz)

A CCELERATION (9) (100 Hz)

ACCELERATION PULSES Filtered to 10 Hz

SCHOOL BUS LABORATORY CRASH TESTS

- ➤ Frontal Rigid Barrier, 0 °, 30 mph
- ➤ Side Impact by Heavy Truck, 90°, 45 mph

SIDE IMPACT CRASH TEST

> Type D Transit Style (Rear Engine)

SIDE IMPACT POSITIONING

SIDE IMPACT CRASH TEST

SIDE IMPACT CRASH TEST

SIDE IMPACT TEST RESULTS

<u>DUMMY</u>	<u>HIC</u>	CHEST G	<u>TTI</u>
1 (HII)	2164		
2 (SID)	277		54.7
3 (5th)	85	27.7	
4 (6 Y/O)	124	11.1	
5 (SID)	133		7.1
6 (6 Y/O)	54	22.7	
7 (5th)	1	7.4	

SIDE IMPACT RESULTS

SIDE IMPACT RESULTS

> Point of Impact

Unsurvivable

Outside Impact Zone

- High Probability of Survival
- Low Probability of Serious Injury

PLANNED RESEARCH

- > PHASE I Problem Definition
 - Scope
 - Fatal Crash Environment
- PHASE II Sled Test Pulse Development
- ➤ PHASE III Sled Testing and Validation

PHASE III Testing and Validation

- ➤ Fabricate Sled Buck
- Develop Test Matrix
- Analyze Results

FABRICATE SLED BUCK

FRONTAL SLED BUCK

SCHOOL BUS SLED TEST

FRONTAL SLED TEST BASELINE CONFIGURATION

PHASE III Testing and Validation

- > Fabricate Sled Buck
- **➤ Develop Test Matrix**
- Analyze Results

SLED TEST MATRIX

- **▶ 3 Occupant Sizes**
- > 3 Restraint Strategies
- > 3 Loading Conditions

OCCUPANT SIZES

- ➤ 6 Year Old Hybrid III (44.9 in /51.6 lbs)
 Typical Young Child
- > 5th Female Hybrid III (59.1 in/108.0 lbs) Size of an Average 12 Year Old
- > 50th Male Hybrid III (69 in/172.3 lbs) Representative of a Large High School Student

SLED TEST CONDITIONS

- > 3 Occupant Sizes
- **▶ 3 Restraint Strategies**
- > 3 Loading Conditions

RESTRAINT STRATEGIES

- > Compartmentalization
 - (Seat Spacing = 19 inches)
- **► Lap Belt Only**
- Lap/Shoulder Belt With Modified Seat Back

SLED TEST CONDITIONS

- > 3 Occupant Sizes
- > 3 Restraint Strategies
- **▶ 3 Loading Conditions**

LOADING CONDITIONS

- ➤ Restrained Without Rear Loading
- Restrained With Rear Loading From Unrestrained Occupants
- Unrestrained Occupant Into Seat Back

RESTRAINED Without Rear Loading

LOADING CONDITIONS

- Restraint Without Rear Loading
- Restraint With Rear Loading From Unrestrained Occupants
- Unrestrained Occupant Into Seat Back

RESTRAINED With Rear Loading

LOADING CONDITIONS

- Restraint Without Rear Loading
- Restraint With Rear Loading From Unrestrained Occupants
- ➤ Unrestrained Occupant Into Seat Back

UNRESTRAINED INTO SEAT BACK

PHASE III Testing and Validation

- > Fabricate Sled Buck
- Develop Test Matrix
- **➤ Analyze Results**

PRELIMINARY SLED TEST RESULTS

Compartmentalization

- Overall Performed Well
 - Some Nij Values Exceed Injury Reference
- Worked Best for Smaller Occupants
 - Larger Occupants Tend to Override Standard Height Seat Back

PRELIMINARY SLED TEST RESULTS

Lap Belt

- Overall Slightly Higher Nij Values Than Compartmentalization
- Nij Values May Be Sensitive to Seat Spacing
- Prevents Larger Occupants From Overriding Seat Back

PRELIMINARY SLED TEST RESULTS

► Lap/Shoulder Belt

- Best Overall Performer When Properly Worn
- Resulting Stiffer Seat Backs May Cause Higher Injury Values for the Unrestrained or Improperly Restrained Occupant
- Prevents Larger Occupants From Overriding Seat Back

SIDE IMPACT MITIGATION CONCEPTS

- Effects of Lap Belt and Lap/Shoulder Belt
- Seat Back and Seat Bench Contouring
- Side Wall Padding/Design

FUTURE WORK

> Continue Frontal Protection Evaluation

- Seat Spacing
- Other Crash Severities
- Seat Back Design
- Other Restraint Concepts

Conduct Testing in Other Crash Modes

- Side Impact
- Rollover?

Z

